- h,
BELLCOMM, INC.
.
COVER SHEET FOR TECHNICAL MEMORANDUM //

TiTLe- A Note On Automatic Generation ™- 64-1031-1

of Documentation by Macro '

Assemblers
FILING CASE No(si- 210 paTe- September 2, 1964

auThHor(si- W, M, Keese, Jr,
FILING SUBJECT(S)~ Documentation
(ASSIGNED BY AUTHORI(S))  Automatic Documentation éi/k%/
Macro Assemblers E) } : —
ABSTRACT

It is shown that macro assemblers can“easily generate
documentation, of a meaningful sort, which is, in at least one
respect, superior to that which can be built into the 'self docu-
menting', English-appearing languages such as ALG@L, NELIAC, etc.

Due to currently common limitations, however, this can
be done only for very small programs. In particular, trivial
difficulties with scan routines and unrealistic limitations on
conditional assembly tend to contribute to the main problem of
table overflow. It is found that an ALG@L-type table clean out
feature would clear the way for practical use.

{NASA-CR-126125) A NOTE ON AUTOMATIC N79-73165

GENERATION OF DOCUMENTATICN FY MACRC
ASSEMBLERS (Bellcomm, Inc.) 33 p
Unclas
00/61 12205

SEE REVERSE SIDE FOR DISTRIBUTION LIST



BELLCOMM, INC. ww. 64=1831-1"

o . DISTRIBUTION

L3

L.

-

COMPLETE MEMORANDUM TO COVER SHEET ONLY TO
CORRESDONDENCE FILES: CORRESOONDENCE FILES:
OFFICIAL FILE COPY - THRREE COPIES-.PLUS ONE COPY FOR
PLUS ONE WHITE COPY FOR EACH ADDITIONAL RACH ADDITIONAL FILING SUBJECT
CASE REFENENCED
REFERENCE COPIES Complete Memorandum to contlnued:
! Bellcomm
Messrs. D. R. Anselmo Messrs. J. M, Nervik
Mrs. C. H. Bronfin M. J. Norris
B. F. Brown Mrs., R. S, Orme-~Johnson
B. M. Bruffey ' E. B. Parker
J. O, Cappellari, Jr. J. E. Parker
M. W. Cardullo W. H. Petty
T. J. Cell H. Pinckernell
H. L. Davis } Miss G. E. Prather
Miss P. B. Dogan H. E. Richards
J. S. Dudek - ' A. L, Rothstein
Miss P. A. Egan A. A, Satterlee
R. S. Farbanish J. A, Saxton
G. Findley S. H. Schachne
Miss L. G. Geiger A. H. Scheinman
W. B. Gragg, Jr. J. J. Schoch
W. G. Heffron “ Mrs. N. Siehl
D. C. Hobbs Miss K. Smith
J., E. Holcomb , A, E. Speckhard
J. A. Hornbeck Mrs., D. H. Speckhard
R. L. Ingle R. D. Rigner
, M. S. Jones T. H. Thompson
Mrs. B. R. Kahan ' J. R. Vetter
Mrs. C. A. Keese ' J. M, West
W. M. Keesge M. S, Willoughby
G. Kerbs ' ' T, C. Wood
C. M. Klingman D. C. Wurtzel
J. Kranton
D. A. Levine
B. H. Liebowitz
Miss A. Locicero
H. S. London
C. A. Lovell
J. P, Maloy
W. J. Martin
Miss N. E. McConn
C. Mee
V. S. Mummert
I. D. Nehama




4«

BELLCOMM, INC.

DISTRIBUTION

COMPLETE MEMORANDUM TO
CORRESDONDENCE FILES:
OFFICIAL FILE COPY -

PLUS ONE WHITE COPY FOR EACH ADDITIONAL
CASE REFERENCED

REFERENCE COPIES

BTL - Whippany

Messrs. P. V. Dimock
N. Foy
W. C. Johnson - 3 copies

CEIR

Messrs. L. P, Gieseler
R. D. Welksner

R. T. Yuill
cuc
Messrs. W, Carlson
J. A, Fish
E. A, Kilroy
IBM

Miss J. Preble
Mr. J. M. Rimback, Jr.

NASA

Messrs. V. Huff
. Turner

o

Philco

Messrs., J.
M.

Mrs. M,

A.

. Current
Ferguson
Smith
Thaler

HOQEO

e ©

SHARE (25)
Yoh

Mr, J., Klingeman

T™-64-1031-1

COVER SHEET ONLY TO
CORRESDONDENCE FILES:

THREE COPIES-PLUS ONE COPY FOR
EACH ADDITIONAL FILING SUBJECT




BELLCOMM, INC. TM-64-1031-1

SUBJECT: A Note on Automatic Generation DATE: September 2, 1964
of Documentation by Macro
Assemblers - Case 210 FROM: W, M, Keese, Jr.

MEMORANDUM FOR FILE

Introduction

This note follows an interesting foray into automatic
generation of meaningful documentation. The foray was undertaken
in bellef in the single document approach for a program, i.e.,
belief that a program listing, itself, should contain all of the
documentation which the program requires* - including even the
raw content of its various levels of flow charts.

This means that the source deck of a large program
should contain many levels of documentation. There should be
considerable explanation of the segmentation. Much material about
data structures, good paragraphization within segments, etc.

There 1s much of interest in automatic aids for this higher area,
but this exercise is not concerned with higher levels. Rather,
it addresses itself to the documentation of individual source
instructions, particularly those of a higher level than simple
arithmetic.

It is often the case that a good percentage of the
source instructions in any large program are involved with
decision making, calling of subroutines, transfers of control,
and the simple moving of data. Somewhere, to be sure, there
are routines which actually do things to data - which use
arithmetic, Boolean, shift, etc. instructions. But, the larger
the program is, the smaller part of it that these instructions
seem to comprise.

In fundamental level documentation, no programmer needs
to be told what (e.g.) a compare instruction does, but he does
want to know what it is that is being compared. Simple machine
knowledge allows recognition of a decision, but only an intimate

%*This is not to say, however, that there should not be
any other documentation.



BELLCOMM, INC. -2 -

knowledge of a program's data base may be able to provide
knowledge of what decision is being made. Where subroutines

are being called (or macros invoked), the situation is even worse,
for no general knowledge is of any use in trying to follow the
program. It can only be done if the call is accompanied by
commentary that explains what is done. :

This kind of commentary 1is vital to the feasibility
of changling large programs and perhaps the most important factor
in controlling the cost of such. Yet, experience tells us all
that even the best of intentions are not always sufficient to
assure that it is always correct and/or up-to-date.

When such documentation can be automatically generated,
one is relieved of this large area of concern in programming
control,

The enclosed example shows that it is easy, with a
quite small macro package, to automatically generate good,
meaningful commentary for the kinds of things outlined above -
documentation about decisions and control, and explanation of
the effect(s) of subroutines. :

The possibility of this hinges upon the fact that all
such actions can readily be performed by macros. These can, in
fact, all be done with a standard macro package (see appendix).
The use of such a package for.decision and control is quite
standard, and needs no explanation here. It 1is shown in section 1.
that the calling of subroutines can and should be effected in a
similar way, with no extra macro definitions on the part of the
programmer. (An added advantage of treating all subroutines,
in the source language of the calling program, as though they
were macros is that proper modularity can be retained in the
source program even when it must be violated in the actual
machine program.)

An example of what can be done terminates this section.
The actual macro package which creates it is included in the
appendix.

Since this macro package 1is rather confusing when
approached as a whole, an heuristic approach is used. Most of
the main concepts arise in the development of the subroutine
documentation macros, and this is done in some detall in sections
1. - 5, Sections 1 and 2 give the milieu from which the rest
arcse;,. Section 3 shows the generation of simple comments, and
variable substitution is added in section 4. 1In section 5,




BELLCOMM, INC. -3 -

expansion 1s made to occur word for word on a recursive basis.
The other macros used in the sample are briefly noted in
section 6. Section 7 notes limitations and draws conclusions.

Particular note should be taken of the difference
between the grade of documentation produced by the macros
appearing in 3, 4, and 5. In 3, one gets nothing but the expanded
subroutine name. In 4, however, one can obtain a meaningful
sentence, with operands plugged into their proper (English
sentence structure) pldces. This is at once a major improvement
in documentation over functional notation, such as is found
in compilers. In order to expand these operand names, so that
the reader may fully understand the documentation without
continual reference to the noun list, one has to go to the
greater effort shown in section 5.

The various examples happen to be done in IBMAP for
the 7040-44, 1In this, "IRP" followed.by an argument, begins
an indefinite iteration on the subfields of that argument. Its
scope 1s ended by the next "IRP". "IFF" and "“IFT" are conditioned
assembly controls. With the first, the following card is
assembled only if false that the (S) symbol value of the two
expressions in The variable field are equal. With "IFT" the
followlng card is assembled only if true that they are equal.
Matched parentheses, in a macro instrucvion, are stripped, but
make the entire character sequence which they enclose into a
single argument. The apostrophe is simply the concatenation
character.



ONE HEADS EACH ROUTINE OR SEGMENV WITH A °*USES® LIST,E.G.

USES APPND(CHAR) { APPEND,CHAR, YD, [D,STRING)
USES GNC() (GET,NC)

USES GONBC{)({GET,NON,BLANK, CHARACTER)

USES SAVID() (SAVE, IDENTIFIER,STATUS)

¢ »

HIfH VARTABLE DECLARATIONS OF THE FORM

VAR

VAR

NC{NEXT»CHARACTER)
PC(PEEK,CHARACTER)

THE_TEXYT OF THE PROGRAM MAY THEN BE WRITTEN

IN ABBREVIATED FORM,

AS BELOW,

IN THE SOURCE DECK.

[ 3

[ J

®

*

* LABEL ANAME (APOSTROPHE-ENCLOSED, NAME)

d GNC

- IF NC+NEQ{=H00000"*)

hd THEN

L] GOTO ANAME

. ELSE

[ APPND NC

d GNC

® GOT0 NONSPC

d XX ]

[ ]

) LABEL  BULNKF (BLANK,FOUND)

" APPND PC :

4 LAC HEAD, I SEY POINTER TO HEAD OF TREE,
. GNBC

d TRA 0,1 TRACE SPECJAL WORD TREE.




09/02

THIS WILL BE EXPANDED JN THE LISTING AS IS SHOWN HERE,

LABEL ANAME (APOSTROPHE-ENCLOSED, NAME)
00006 ANAME EQU e
APOSTROPHE-ENCLOSED NAME ..
GNC .
GET NEXT CHARACTER
1F NC.NEQ(=H00000*)
e [F NEXT CHARACTER NOT EQUAL TO
=H00000Q"*
201
3 THEN
e THEN
GOT0 ANAME
GO TD APOSTROPHE-ENCLOSED NAME o
ELSE
e ELSE .
APPND  NC
APPEND NEXT CHARACTER TO ID
STRING ,
GNC
GET NEXT CHARACTER
GOTO NONSPC )
GO TD NONSPC ,
1 . L 3 X I N ]
002 .
[ J
LABEL  BULNKF(BiLANK, FOUND}
00016 BLNKF EQU e
BLANK FOUND <.
APPND PC
APPEND PEEK_CHARACTER TO 1D
» STRING
0 1 00003 10001 LAC HEAD, I SET POINTER TO HEAD OF TREE,
GNBC
: ) GET NON BLANK CHARACTER ,
0 1 00000 10000 TRA 0,1 TRACE SPECIAL WORD TREE.




BELLCOMM, INC. -6 -

1. Background

The automatic documentation features described
below were not created in vacua. Rather, they were
recognized as a free bonus coming with certain other
features being built into a set of standards for assembly
language program packages.

Two of these are relevant. First: each routine
or segment of a large program should carry with it a list
of first level subroutines used. Second: while the fact
that a subroutine is called is a part of the logical
structure of the calling program, the way in which it is
called is part of the logical structure of the subroutine -
not of the calling program; it 1s therefore better
modularity that the source language of the calling program
should specify merely the existence, not the method, of
the calls.

This second consideration gives rise to the notion
that a particular call should be effected in an assembly
language merely by writing the name of the subroutine in the
operator code field (with any variable 1list(s) in the variable
field). Particular knowledge of how a given subroutine is
called can then be localized to one macro definition. Indeed,
since, even in real time programs, most subroutines can be
called in some standard manner, a standard call defining
macro could be used to define most of the subroutines' calls,

The inclusion of a 1list of first order subroutines
used, however, relieves us of even this necessity. This
list, itself, can be used to define all the standard calls.,
Only those special routines which efficiency or special
difficulty demand to have uncommon calls need have their
names defined as call creating macros.




BELLCOMM, INC. -7~

2. The Elementry Uses Macro

We were first led, then, to the creation of a
USES macro. Each routine or segment of a large routine
contains in its head a set of USES cards., Each of these
cards contains the word 'USES' in its operator field and
the name of a subroutine in its variable field, along with
some explanation of the routine's effect.

The original purpose of these cards was simply
the display of program organization. An elementry
extension creates standard call definitions.

The USES macro first asks whether the subroutine
name has been previously treated. If it has, it does
nothing, but if it has not, then it defines it to create
a standard system call. At thls stage of development, the
macro reads (in 7040 IBMAP)

USES MACR@ NAME
IFF NAME'.=DEFIND
USES1 NAME
ENDM USES

USES1 MACRgZ NAME

NAME'. SET DEFIND

NAME MACRY ARGLST ,ERRT
CALL NAME (ARGLST ) ERRT
ENDM NAME
ENDM USES1

(It is intended that this package run under no
created symbols.)

The creation a symbol from "NAME" by concaten-
ation of a period 1s possible for us, since the standards
in use at Bellcomm 1limit the length of a subroutine name
to one character less than maximum symbol length. Even
without this, one could still ask whether definition had
occured by making the meaning of the created NAME macro
depend on whether or not some symbol was set to USES or
to N@RMAL. Under the USES mode, NAME (if defined) would
set the remainder of USES to be null (save for terminal
self restoration). The remainder of USES would elsewise
create the standard definition. This (using an operator-
synonymous operator) could be done with no expandingly
greater use of macro skeleton space, but it would be
somewhat slower.



BELLCOMM, INC. -8 -

3. Generation of a Primitive Comment

Since rudimentary documentation practices demand
that each of the USES cards carry some explanation, it is
but a simple step forward to automatically reproduce this
comment whenever the subroutine is called. This will be
shown here in a primitive manner, while the next section
will go on to show an elementry plugging in of arguments.

One merely encloses the explanation in
parentheses (to make it a single argument) and moves it
over from the comment field to adjoin the name. USES is
now made a 2 argument macro. If it finds that NAME has
not been defined, then it passes both the name and the
(reparenthesized) comment along to USES1 which now reads

USES1 MACRY NAME ,C@MENT
NAME' SET DEFIND
NAME MACRY ARGLST,ERRT
CALL NAME (ARGLST)ERRT

PMC @N
REM 'CZMENT*
PMC @FF

ENDM NAME
ENDM USES1

In its definition of NAME, USES1l has added 3
card images. These turn on the printing of macro expan-
sion cards, print the comment as a remark, and turn off
the printing of macro generated cards: (as PMC is a
control card, it, itself, will not be printed.)

In actual practice, NAME could be made shorter,
saving skeleton space, by passing "CZMENT" along to another
macro, which would do the three card expansion.



BELLCOMM, INC. -9 -

4, Comments With Substitutable Arguments

Whereas many subroutines have arguments, and their
effect is on these arguments, a meaningful comment generator

should plug the names of these arguments into the comments. This
is a relatively easy addition.

In the following expansion, we start afresh and use
slightly more levels, so as to conserve skeleton space. An
argument list is added to the USES macro to make 1t possible to
tell what words of the explanation should be substituted.

USES MACR@ NAME (ALIST)C@MENT
IFF DEFIND=NAME'.
USES1 NAME (ALIST) (C@MENT)
ENDM USES

USES1 MACR@ NAME (ALIST)C@MENT
NAME'. SET DEFIND
NAME MACRg@ ARGLST ,ERRT
USESZ2 NAME (ARGLST) (ERRT)
ENDM NAME
NAME'. MACRY ALIST,DUMMY1,DUMMYZ2
PRSEQ (CZMENT)
ENDM NAME',
ENDM USES1

USES?2 MACR® NAME (ARGLST)ERRT
CALL NAME (ARGLST)ERRT
NAME'. ARGLST,ERRT
ENDM USES?2

PRSEQ MACR® TEXT

PMC @N
REM 'TEXT'
PMC @FF

ENDM USES3

If one were not sure of the abllity to concatenate the
period to NAME, the macro "NAME'." could be named by a created
label, generated by turning them on, going an extra level 1in,
and turning them off. Its name would then be passed on to USES2.

We have reached the level which is best explained by
an example, save for a preliminary note. Whlle USES2 and PRSEQ



BELLCOMM, INC. - 10 =

were created mainly* to conserve skeleton space (for each of the,
presumably many, NAME and NAME'. macros), the creation of the
"NAME'." macro serves a very different function. Since "ALIST"
is built into 1its formal parameter list, while the comment is
built into its skeleton, any delimited phrases in "C@MENT" which
are the same as delimited phrases in "ALIST" will be substituted
at expansion time. When a call is made (NAME is invoked) the
actual parameter list 1s sent along to "NAME'." and the appro-
priate substitution is made for PRSEQ. The two dummy arguments
of "NAME'." are merely to avoid a falacious diagnostic regarding
argument count which 7040 1BSYS likes to make.

Suppose now that ADDT@ has not previously been defined
and that the followling source card appears.

USES ADDT@(A,B) (ADD 'A' T@ 'B')
This will expand into

IFF DEFIND=ADDT@ .

USES1 ADDT@(A,B)(ADD 'A' T@ 'B')

ADDT@. SET DEFIND

ADDT@ MACR® ARGLST,ERRT
USES2 ADDT@(ARGLST) (ERRT)
ENDM ADDTY

ADDT@. MACRO A,B,DUMMY1,DUMMY2
PRSEQ (ADD 'A' T@ 'B')
ENDM ADDT@

Now consider a later point in the text where a card
appears with "ADDT@" in the operator field. It will expand
as below.

ADDT@ (ALPHA,BETA) (source card)
USES2 (ALPHA,BETA)()

CALL ADDT@(ALPHA ,BELA)

ADDT@. ALPHA,BETA

PRSEQ (ADD ALPHA T@ BETA)

PMC @N
REM ADD ALPHA T@ BETA
PMC @FF

The desired expansion is achieved.

¥for some assemblers, PRSEQ is necessary. See section 5.



BELLCOMM, INC. - 11 -

5. The Print Sequence Macro, PRSEQ

In section 4., we introduced the use of a macro
PRSEQ, ostensibly to save space. This macro (although not
as shown there) 1s actually necessary to some assemblers,
and is desirable in order that another level of documentation
be achleved.

In fact, the system shown in section 4, will not
work, as shown, on the 7040-IBMAP version 3, due to a
fault in the assembler's macro skeleton scan. Thils fault
is asserted to be corrected in version 6, but we have not
yet seen evidence of this. To wit, USES 1is supposed to
build the card image

PRSEQ (CZMENT)

into the skeleton of "NAME'.". Such a card is indeed
generated while this skeleton is being built up, but the
scan in question stops at the first blank, not keeping a
parentheses count. Thus, while the card generated for the
skeleton 1is

PRSEQ (ADD 'A' T@ 'B')
, the line which is actually entered into the skeleton 1is
PRSEQ (ADD

. One can readily imagine to what grevious errors the
generation of such a line leads the assembler. Such a
scan error is apt to be met in many assemblers, so a way
around it is important.¥

Further, the kind of comment generated by the
macros of section 4, is not all that one might hope for.
To wit, it is not sufficient that the symbolic names of
variables be plugged into the comments generated by
invoking a subroutine; one would prefer to plug in an
explanation of what those names stand for. Put more
simply, it is desirable that the expansion of comments
should be a recursive process - going down through each
word of the expansion (expanding it in turn, etc.) until
all elements have been expanded to some bottom level.

%¥Tt actually suffices, for our assembler, to bulld
the body of PRSEQ, as shown, into USES1l's definition of NAME'.




BELLCOMM, INC. - 12 -

This aim can be accomplished, and its accomplishment
bypasses any trouble that assembler scan routines may have about
blank characters. In the accomplishment, all definitions given
in section 4, except that of PRSEQ and USES2, stand as given.
The use of USES, on the other hand, changes. Specifically, one
separates each of the words in the comment skeleton by commas.

Thus, Instead of writing

USES ADDT@(A,B)(ADD 'A' T@ 'B')
one writes

USES ADDT@(A,B)(ADD,A,T@,B)

The definition of PRSEQ, however, becomes far more
complicated. It becomes necessary to add words, one at a time,
to a line image. USES2 becomes

USES2 MACR®  NAME(ARGLST)ERRT
CALL NAME (ARGLST)ERRT
PRSET  SENT.
NAME'. ARGLST,ERRT
PRLINE (,)
ENDM USES2

Of the two additions, "PRSET SENT." sets up printing
routines to use a sentence type of format, while "PRLINE (,)"
causes the printing of a final line image with a comma ending
the line. The generatedmacrc "NAME'." still invokes PRSEQ, sending
the comment (with actual arguments substituted) as a single
argument. (In our example, "ADDT@." would generate "PRSEQ
(ADD,ALPHA,T@,BETA)",)

PRSEQ, itself, merely does an indefinite iteration on
the sub-arguments of its one argument - sending each of them
on to a high level concatenate macro, PRADD.

The high level concatenate macro merely tests each
of its arguments received for further expandibility. If it is
SO expandable, then this 1s done; elsewise, it passes the
argument on to an exact concatenate macro, PREADD.

This concatenate macro, PREADD, is the heart of the
entire automatic documentation system. It 1s the accessible




BELLCOMM, INC. - 13 =

member of a pair of macros invented by Ann L. Locicero [1],
which makes 1t possible to build up a linear image from
successive calls of a macro,

For purposes of explanation, let us imagine that the
concatenate macro were spelled "C@NCA" while its partner were
spelled "C@NCAT".

The original definitions would be

C@NCA MACRY TEXT
C@ONCAT (TEXT)
ENDM C@NCA

C@PNCAT  MACRY TEXT

C@NCA MACRQ M@RTXT
C@NCAT (TEXT ,M@RTXT)
ENDM C@NCA
ENDM CONCAT

Each invocation of C@NCA invokes C@NCAT so as to
bulld its existant argument into all future calls. For instance,
imagine the above definitions to be given and then the source
cards

C@NCA A
C@NCA B
CONCA - C

to appear. The complete expansion would be

C@NCA A
C@NCAT (A)

C@NCA MACR®@ M@RTXT Orig. meaning of C@NCA
C@NCAT (A ,M@RTXT) established meaning
ENDM C@NCA 2 of CONCA.
C@NCA B
CONCAT  (A,B)

C@NCA MACR@ M@RTXT Meaning 2 of C@NCA
C@NCAT (A,B,M@RTXT) established meaning
ENDM C@NCA 3 of C@NCA.
C@NCA c

CONCAT (A,B,C)

[1] Locicero, A, L.: "Linear Accumulation in Sequential
Macros"; unpublished, Bellcomm, Inc.



BELLCOMM, INC. - 14 -

CgNCA  MACR@Z  M@RTXT Meaning 3 of C@NCA
CANCAT (A,B,C,MZRTXT) established meaning
ENDM C@NCA four of CONCA.

In actual practice, the partner macro also does
bookkeeping to make sure that maximum legal argument length 1is
not exceeded. This tends to make for an excessive amount of
complication and could presumably be avolded in more adequate
macro assemblers,

The PRSET routine uses its parameter to chose one of
a set of actual print out macros used by PRLINE. It essentially
sets a switch through the use of the operator-synonym operator.

The print line macro, PRLINE, sends its argument (if
any) along to PREADD (properly parenthesized so that a separator
comes out as a substitutable argument at the bottom level). It
then invokes a print current line image macro, PR5., to cause the
actual print. PR5. is also used by the concatenate partner
macro, PR8., in case of line overflow.

The print current line image macro, PR5., changes
the meaning of the concatenate partner, PR8., to that of a
prepare for actual print macro, PR6., invokes the concatenate
macro (which now invokes PR6. with all of its previous arguments
built intc its parameter), and then restores the concatenate
macro and its partner to their initial meanings. The prepare
for actual print macro, PR6., receives the built up line image
as a single parameter (held together by its parentheses) from
the prevertedly used concatenate macro, and sends it along
through the dummy macro (which has been set by PRSET to be
synonymous with one of the actual print macros). As PR6. has not
parentheslized its single argument, this now comes apart into
its several components which can be spaced apart from each other
by the actual print macro (which always devolves into turning
on macro print out, generating some remark card, and turning off
macro printout).

Some complication could be done away with here if
only it were possible to inbed blanks in the remark skeleton
in the first place. Those having assemblers with such capability
Will find it easy to simplify the example.



BELLCOMM, INC. - 15 =-

6. Conditionals, Go To Statements, and Other Declarations

ALG@L-1like conditional statements are easily put
into an assembler in any number of ways. The if-then-else
package used in the preceeding example is an off-the-=cuff
version and could stand considerable improvement, particu-
larly in the recognition of single word alternatives.

As a generator of documentation, it is an easy
matter to have the various relational macros directly generate
a remark line, plugging in variable names. By making use of
the print package, it is possible to expand the names of the
variables, exactly as is done in generating subroutine comments.

The assembly operations of the package are perfectly
straightforward. The IF macro merely turns on created symbols
and 1lnvokes an appropriate relation macro, such as GTR. This
turns off created symbols, prints a comment, creates an
appropriate comparison triplet, and sets up meanings for THEN
& ELSE.

The design objective was that the third member of
the comparison triplet never have to contain a comparison
transfer. Any assembly reached by the other alternative is
to be remote. The particular system uses the location
counter choosing facilities available in IBSYS, but any
remote facility could serve as well, The use of the macros
USEN and USEP is purely for conformity with other standards
in use where this package was written. (These two macros
make up for the fact that USE X and USE PREVI@US fail to
operate in a push down fashion.) If-Then-Else allows speci-
fying either the arithmetic or logical accumulator but does
not presently guard against trying to load one from the
other.

The G@TP macro is thrown in merely to allow auto-
matic commentary. AS LABEL declarations (unlike USES & VAR)
need not precede the use of the associated identifiers, there
is no guarantee that G@T@ will expand the name of the desti-
nation. (It will expand it if and only if it is a transfer
backwards.) "G@T@" is used rather than redefining "TRA"
because the present automatic documentation facilities cannot
handle indexed addresses.

LABEL and VAR are essentially dimensioning operators.
The first defines a symbol and an associated comment, and



BELLCOMM, INC. - 16 -

produces that comment as a paragraph heading, followed by a
colon (".."). VAR remotely assigns a full word variable
and assoclates a commentary name with its symbolic¢ name,

If a symbol which has been defined by either of
these appears as a parameter, then its expanded name will
appear in the generated commentary.



BELLCOMM. INC. - 17 -

7. Conclusions

The example shown in the introduction shows that a
high grade of automatic documentation is possible, However,
it is not practical at this level, for one runs into limi-
tations on table sizes.

Programs using this full level of expanded docu-
mentation run into overflows at between two and fifteen pages
of expansion, depending on content.

Two possible courses of action are open: one can
settle for the level of documentation generated in section
4., or one can move to repair the assembler deficiencies
which cause overflow.

The section 4., level of documentation is marginally
adequate. If name lists are particularly small or orderly,
or 1f documentation requirements elsewise do not require
explanation of all operands with each use, then the docu~
mentation created at this level is entirely satisfactory.

The generation is extremely simple and cheap, and gives no
trouble with table sizes. At almost no cost, and at some
lessening of normal programmer effort, one can assure that
documentation 1s always accurate and current. Others will
find that this grade of documentation is just not good

enough,

As to repairing the assembler characteristics which
make the full course impractical, there are three things
which would help a bit, and one which would entirely suffice:

Proper scan facilities in the bullding of macro
skeletons would allow the expansion of comments to be done
in many less steps - resulting in considerable saving in the
number of skeletons generated. :

Proper handling of end of line overflow on generated
remark cards would relieve the macro package of considerable
bookkeeping bother.

Greater table sizes would help a bit.
This last measure, however, would only be a small

stop-gap. What is needed is some way to clear the tables of
entries no longer needed.



BELLCOMM, INC. - 18 -

While one could evolve all sorts of complicated
schemes for this, the ideal solution seems to be the adoption
of an ALG@L - like block structure - at least for macro
definitions. 1In this structure, one could define BEGIN-END
pairs (which could be nested). Every time a BEGIN was en-
countered, the condition of the tables could be marked. On
meeting the corresponding END, the condition could be
restored. This can be implemented merely by the addition
of two words to each macro skeleton (with the addition of
some elsewlse vacuous skeletons for operator-synonym

operations).

1031-WMK-mat W. M, Keese, Jr,

Attachment
Appendix



BELLCOMM, INC.

APPENDIX
The following pages include the macro package

used In the generation of the example shown in the introduction.



09/04/6%

\$TEXT
¢ AUTOMATIC DOCUMENTATION WM KEESE 8/15/64
¢
‘ e USEN-~-USEP
i . -
FO. MACRO INITIAL RESTORATION MACRO.. o
Fl. OPSYN FO. RESTORE SELF TO INIVIAL,
USEP OPSYN  F.USE SET *'USEP®* TDO GIVE FAULT,
- USE USE _BLANK LOCATION COUNTER.
ENDM FO.
»
Fl. OPSYN FO.
[ J
F2. MACRO X USED TO HOLD REDEFINITIONS OF Fl. TO 1 LV
Fl. DPSYN X - RESTORE TRACE FORWARD MACRD,
USEP OPSYN ) 4 SET 'USEP' TD CURRENT USE NAME,
USE X USE CURRENT USE NAME LOCATION CNTR,
ENDM | F2.
. .
F.USE MACRO ILLEGAL °‘USEP' FAULT..
b PMC ON
i SPACE 1.
REM SRS BER NN GEI NN B RSN RS ARG R RN O IR AR NN SR G R E NN NG RRARGRNERS
REM *ATTEMPT TO USE ~USEP~- WITH NO ~USEN~ IN EFFECT- IGNORED®
REM SERERENNON SRR RRANERENE RGNS N NG ENNI NN SRG RN RERRRBNRER
SPACE 1
PMC OFFf
ENDM F.USE
-
USEN. MACRO cL WORKING USE NEW MACRD..
CL OPSYN Fl. SET CREATED LARFL FDR PERM TRACE BACK
ysep nPSYN Fil, SET °*USEP' FOR CURRENT TRACE BACK,
® 4 UPDATE TRACE BACK MACRD
Fle. MACRO BUILD CL NAME INTD MACRO TABLE
Fz ] ]
ENDM Fl. ({SEE F2. FOR RESTORATIDN.)
®
USE CcL USE NEW LOC CTR.
- ENDM USEN.
. .
USEN MACRO _ ANYLAB 'USE_NEW®' MACRD..
ORGCRS UNLESS A NAME 1S GIVEN, CREATE ONE.
USEN, ANYLAB DO THE WORK,
NOCRS TURN OFF SYMBOL CREATOR.
_— ENDM USEN
®
USEP OPSYN FLUSE ‘USEP® INITIALLY PRODUCES FAULT.




09704764

L 4

IF=-THEN=-ELSE

AAC _ _OPSYN  CLA LOAD _ARITHMETIC AC.
. :
— DEEQR _MACRO  RM,CL,CLD BUILD LABELS & REMOTE TYPE INTQ -0P -,
oP. MACRO T MAKE ~DP.(TYPE)~- MEAN
T .'RM _CL,,CLD _INVOKE *TYPE® QOF SREMDYEYYPE?®,
ENDM oP.
ENDM____DEFQOP
.
——ELSE___MACRO ELSE..
PMC ON . PRINT REMARK,
REM e ELSE
PMC OFF
oP. E ‘ DO DP.{ELSE). R
ENDM ELSE
2
EQU. MACROD AyBo,CLT(CLD EQUAL TO0.. )
PRSTAT FLAG.(IF,A(=)B) PRINT REMARK,
REL  LAC,LASy##2,C1T4A,8 CREATE LOAD AND COMPARE TRIPLEY,
DEFOP  RT,CLT,CLD BUILD LABELS AND °REMDTE THEN® IN OP.
ENDM . _EQU.
[ J
E-RE MACRO CiF,CID = FILSE FOR REMDYE FISE,.. =~~~ ===
ook SET 1 MARK *'ELSE® DONE,
USEN START NEW _LOCATION COUNTER, N
CLF EQU L DEFINE FALSE LABEL.
ENDM _ E.RE
EARI___HACRD___LLI4£LD_ ___ELSE_EHR_REHDIE_IHEN--
TRA cLD GENERATE TRANSFER TOD END OF COND.
USEP.
ENDM E.RY
B .
GEQ. MACRO  AyB,CLT,CLD" GREATER THAN OR EQUAL T70..
NOCRS ‘
PRSTAT FLAG.(IF,A,GREATERy THAN,OR(=)B) PRINT REMARK,
DEFOP  RT,CLT,CLD BUILD LABELS AND REMOTE THEN IN OP.
ENDM GEQ.

GIR.  MACRO  A,B,CLT,CLD _ GREATER THAN..

NOCRS

..... PRSTAT _ FLAG.(1F,A,GREATER,THAN,B) PRINT REMARK,
REL AACoCASoCLT,#+1,A,B CREATE LOAD AND COMPARE TRIPLET,
DEENP  RT,CIT.CID BUILD t ARFIS AND REMOYE THEN INTO 0P,

ENDM GTR.




09/04/6%

1F-THEN-ELSE

IF MACRO  A,REL,B 1F..
eoE SET 0 MARK *ELSE® UNDONE,
ORGCRS __TURN ON CREATED SYMBOLS 71O CREAVE
REL'. A,B 2 LABELS AND DO APPROPRIATE RELATION,
NOCRS MAKE SURE CREATED SYMBOLS OFF.
ENDM IF . .
(] ,
LAC OPSYN  CAL : , LOAD LOGAICAL AC..
[ ) .
LEQ. MACRD A,B,CLE,CLD LESS THAN OR EQUAL TD..
NOCRS
PRSTAT FLAG. (1FsA,LESSyTHAN,OR, (=)T0OsB) PRINT REMARK,
REL AAC,CAS,CLE,%+1,A,B CREATE LOAD AND COMPARE TRIPLET,
DEFOP  RE,CLE,CLD BUILD LABELS AND REMOTE ELSE INTO OP.
ENDM LEQ.
[ ) .
LOAD _ MACRO  REGyX __LDAD REGISTER..
IFF REG=X - IF OPERAND /= REGISTER
REG X THEN DO APPROPRIATE LDAD.
ENDM  LOAD \ v
@
LSS. MACRO A,B,CLE,CLD LESS THAN..
. NOCRS :
, PRSTAT FLAG.({IF,A,LESS,THAN,B) PRINT REMARK,
— o _REL______AAC,CA A REATE LOAD AND COMPARE T
| DEFOP  RE,CLE,CLD BUILD LABELS AND REMDTE ELSE INTO DP.
ENDM LSS,
NEO. MACRO  A,BoCLE,CLD  _ NOT EQUAL T0O..
NOCRS i \ '
PRSTAY FLAG.(IF,A,NOT,EQUAL,TO,B) PRINT REMARK,
REL LACsLAS,5+2,CLE,AoB CREATE LOAD AND COMPARE TRIPLET,
DEFOP __ RE.CLE,CLD BUILD LABELS AND REMOTE ELSE INVD OP.
~ ENDM NEQ. ' :




_—— - 09/04/56¢4

AT P R ittiin,

Y IF=THEN=EL SE
®
— CREATE _LOAD AND _COMPARE TRIPLET..
REL MACRO REG.COMP,LGTR;LEQsA,8
LOAD _ REG,A DO _APPROPRIATE LNAD,
cCOoMP B SET UP COMPARISON,
JRA LGIR IE G )
TRA LEQ IF EQUAL, GO TO EQUAL LABEL.
_ENDM REL. ASSUME LESS THAN CASE FOLIOMS.
. - [ad
IHEN _ _MACRO IHEN. .
PMC ON " PRINT REMARK.
REM o THEN
PMC OFF
opP. T . DO DP.(THEN).
ENDM  THEN
—
T<RE OPSYN  NULL THEN FOR REMOTE ELSE.. (= NULL)
T<RT  MACRO CLT,CLD THEN FOR REMOTE THEN..
USEN USE_REMOTE LOCATION COUNTYER,
cLY EQU . DEFINE TRUE LABEL.
ENDM. I.RY
o
_eeRE __ _MACRO___CLE,CLD ___END DF CDONDITIONAL FOR REMOTE FLSE..
IFT e«E=0 IF THERE WAS ND *ELSE®
CLE EQU__ cLD DEFINE FLSE-1L0OC = DONE-tOC.
IFF e«E=0 IF THERE WAS AN °ELSE®
IRA cLD IRNSEER OQUY OF THE REMOTE,
IFF e« E=0 :
USEP. AND END THE REMOTE SECTION.
CLD EQU ° DEFINE END OF COND. LABEL.
ENDM «oRE
® . : .
—eRI ___MACRO . CLY,CID END OF CONDITIONAL EQOR _RFMOYE YHEN..
CcLwD EQU ® © DEFINE END OF COND. LABEL.
ENDM ~aRY _ :

eee  MACRO

END OF CONDITIONAL ..

PMC ON PRINT REMARK )
REM__ ® evena :

PMC OFF ; -

OP. - 00 DP.(END OF CONDITIONALY.

ENDM




_09/04/6

¢PRINYT MACROS PRINT
» : :
[ ‘THESE MACROS ARE USED TO BUILD UP AND PRINTY LINE
. IMAGES IN THE AUTOMATIC GENERATION OF COMMENTS.
. B
¢ . THE MAIN 'ENTRIES® ARE
¢ - .
(2 PRADD APPEND PHRASE YO LINE
[ PREADD APPEND EXACT PHRASE VO LINE
L PRLINE (ANY PUNCTUATION) PRINT LINE
@ PRSEQ {
. PRSTAT TYPE(MESAGE)PUNCT PRINT MESAGE AS TYPE WITH PUNCT
o PRSEY TYPE SET LINE TYPE - .
. ¢
@ . ¢ R HER *HEAD.'e °'FLAG.'9e
[ OR *SENT.'. : v
[ ]
o THE OTHER INTERNALLY USED PARTS ARE
® : ,
3 PR1. ACTUAL HEADER PRINT
® PR2. ACTUAL FLAGGED PRINT
. PR3. ACTUAL SENTENCE PRINT
K ) PR&, ACTUAL PRINT DUMMY
® PRS. PRINT CURRENT LINE
® PR6. STRIP PARENS FDOR ACTUAL PRINT
® PRT. NORMAL APPEND PARTNER
® PR8. APPEND PARTNER
® PR11. SET HEADER PRINTING
L ) PR12, SEY FLAGGED PRINTING
° PR13. SET SENTENCE PRINTING
[ . .
PR1. MACRO AeB,CyDoELFyGoH ACTUAL HEADER PRINT,.
PMC ON ; ‘
REM \ *AY g eCe Ipe sEe SE1eGe
PMC OFF .
ENDM _ PR1.
®
PR2. MACRO AsBoCyDeEsFsGoH ACTUAL FLAGGED PRINT. o
PMC ON
—REM ® VAV SR LI IDE SES EFEeIne
PMC OFF '
PR13. RESET PRINT DUT FOR NORMAL LINES.
ENDM PR2.
— ® .
PR3, MACRO AeByCyDoEsFeG ACTUAL SENTENCE PRINT..
PMC ON
REM SA? SRe (s DY SEeIFE
PMC OFF —
, ENDM PR3.
® —
PR4&. OPSYN PR2. ACTUAL PRINT DUMMY..
® v (SWITCHED BY PRSET)




09/04264

. . PRINY
e .
PRS. ___MACRO .o
PRB. OPSYN PRé. CHANGE APPEND PARTNER TO MEAN
Y
PREADD R AND INVOKE IT.
PAMCY. SET 0 RESET WORD_COUNT,
PR8. OPSYN PR7. RESEY APPEND PARTNERy
PREADD OPSYN ___PRE.- RESET APPEND EXACT WORD,
ENDM - PRS. - '
PR6. NACRO TEXT: STRIP PARENS FDR ACTUAL PRINTV..
PRG&., TEXT SEND SEPARATED ARGS THROUGH
ENDM PR6. ACTUAL PRINT DUMMY.
. .
PRT. MACRO  TEXT NORMAL APPEND PARTNER..

_znsAnn_nAczn___unarxf

—REDFEINE APPEND EXALY WORD

PR8. (TEXT¢MORTXT) TO INVOKE PARTNER WITH TEXT BUILT IN.
ENDM___ PREADD _ - -
PRWCT. SET PRWCT.+1 UP WORD COUNT.
1EY PRHCT .=PRHL M, IE£ _WORD COUNT = WORD L IMIT
PRS. THEN PRINT CURRENT LINE.
ENDM ___ PRT, :
L ] .
PRB,  DPSYN __PRT. APPEND PARTNER..(SET TD NORMAL)
™ _ 4
PR11. MACRQ SET_EOR ‘HEADER | INES..
PR4. OPSYN PRl. MAKE-ACT. PRINT--ACT. HEAD. PRINT-,
PRWIM, SET 5 6 =. WORD L IMIT.
ENDM . PR1l.
PR12. MACRO SET FOR FLAGGED PRINT..
—PR&., OPSYN PR2. MAKE_ACTUAL PRINT = FIAGGED PRINT,
PRWLM. SET 6 6 =. WORD LIMIT.
: ENOM PR12. . .
[ ] . '
PR13. MACRO. SET_FNR SENTENCE LINES
PR4. OPSYN PR3. MAKE-ACT. PRINT--ACT.SENTENCE PRINT-,
PRWLM, SETY 5 S =, WORD LIMIT, o
‘ ENDM . PR13.
. |
PR14. MACRO OP
fuld
ENDM PR14.




09/04/64,

|
|
|

o PRINT
®
PRADD__MACRO _ TEXT ' ADD. PHRASE TO LINE..
IFT  DEFIND=TEXT'. IF TEXT IS DEFINED
PR1&,  TEXT', THEN EXPAND IT
IFF DEFIND=TEXT'. ELSE
PREADD _ (TEXT) ADD IT DIRECTLY TD LINE.
ENDM  PRADD ~
[ J
PREADD OPSYN  PRS. APPEND EXACT PHRASE TO LINE..
: | |
PRLINE MACRO _ PUNCT PRINT LINE..
PRWLM. SET PRHLM. +1 UP_WORD LIMIT FOR PUNCTUATION,
" PREADD ((PUNCT)) ADD ANY PUNCTUATION,
PRNLM. SET PRHLM, -1 RESTORE_WORD LIMITs
* PRS. PRINT CURRENT LINE IMAGE.
ENDM ___ PRLINE \
= .
PRSET MACRO __ TYPE SET LINE TYPE..
IFT TYPE=HEAD. (DECODES -TYPE- AND
PR11. CALLS APPROPRIATE INITIALIZER.)
IFT TYPE=FLAG.
PR12. |
IFT TYPE=SENT.
PR13.
ENOM  PRSET
® . .
PRSEQ MACRO  COMENT APPENT PHRASE SEQUENCE..
IRP COMENT | |
PRADD _ (COMENT) APPEND PHRASE TO LINE.
IRP '
ENDM  PRSEQ
PRSTAT MACRO  TYPE,MESAGE,PUNCT
PRSET _ TYPE |
PRSEQ _ (MESAGE)
PRLINE _ (PUNCT) . ,
ENDM  PRSTAT




D9/D&/6:

3 USE:«
GOoT0 MACRO LABEL \
TRA LABEL
PRSET SENT.
PREADD GO
PREADD TO
—PRADD — LABEL
PRLINE (,)
ENDM______GOID
®
LABEL _MACRO  NAME,COMENT
PMC ON
NAME __ EQU e
PMC OFF
_NAMES®, SET DEFIND MARK NAME AS BEING DEFINED,
NAME®'. MACRO DEFINE ASSOCIATED EXPANSION MACRD..
PRSEQ  (COMENT) PRINY NUY PHRASES IN MACRO.
ENDM NAME®*.
PRSET __ HEAD. SEY PRINTER TD PRINT HEADING,
NAME'. PUT CDMMENT PHRASES IN LINE IMAGE,
PRLINE (..) PRINT LINE FOLLOMED BY COLON.
ENDM LABEL
—
USES MACRO SR(ALIST)COMENT
1FF SR' . =DEFIND I1F_SUBRODUTINE MALRO NOY DEFINED )
USESl. SR(ALIST)(COMENT) THEN DEFINE IT
ENDM USES :
®
~USES]1. MACROD SR{ALISTICOMENY
SR*, SET DEFIND NOTE THAT SR IS DEFINED.
SR MACRO _ ARGLST,ERRY DEFINE SR NAME
USES2. SR{ARGLST) (ERRT) TO0 INVOKE STANDARD CALL.
‘ ENDM SR ‘ ]
SR*, MACRO ALIST,DUMY1,DUMY2 DEF[NE AUGUMENTED NAME
. PRSEQ . (COMENT) Tn—ABEEND_ALL_CﬂMHENI_HﬂRnﬁA
ENDM SR*.
__ENDM USESY.

USES2, MACRO  SRUARGLSTIERRT

CALL  SRUARGLST)ERRT PRODUCE DESIRED STD. CALL,
PRSET  SENT. READY PRINT MACROS ENR SENTENCE,
SR'.  ARGLST,ERRT PUT COMMENT WORDS IN LINE IMAGE,
PRLINE () PRINT LINE WITH COMMA.
g ENDM  USES2.
L 3
VAR  MACRO  NAME,COMENT
USEN SIOR __
NAME
USEP
NAME®'. SET DEFIND
NAME®. MACRO
PRSEQ  (COMENT)
ENDM NAME® .
ENDM VAR




09/04/64

[ J .
DEFSYM MACRO LISY
IRP “LIST
LIST SET DEF.
DEF. SET - DEFe+1
IRP
» . ENDM DEFSYM
37200 DEF. SETY 16000
®
DEFSYM (AAC.DEFIND.LAC)
DEFSYM (HEAD.sFLAG.ySENT.)
. : v
[ ]
- 00001 1 SEY 1
s

00000 10000 APPND
- 00000 10000 GNC
00000 10000 GNBC
00000 10000 HEAD
00000 10000 NONSPC
00000 10000 SAVID

NOCRS




. 09/04/64

- ONE_HEADS EACH ROUTINE OR SEGMENY WITH A CUSES® LIST,E.G.
[ J
USES
USES GNC() (GET¢NC)
USES GNBC L) (GET,NON,BLANK,CHARACTER)
USES - SAVID(){(SAVE,IDENTIFIER,STATUS)
e
[ WITH VARIABLE DECLARATIONS OF THE FORM
)
VAR NC(NEXToCHARACTER)
VAR PLIPEEK LHARACTER)
o
[ THE TEXY OF THE PROGRAM MAY YHEN BE MRITTEN
® IN ABBREVIATED FORM, AS BELOWs IN THE SOURCE DECK.
=
. L LABEL ANAME (APDSTROPHE-ENCLOSED, NAME)
®. GNC .
o IF NC o NEQ{=H00000*)
» THEN
o GOTO0 ANAME
e ELSE
° APPND NC
® GNC.
L GOTO NONSPC
. coe
[ ) .
o LABEL  BINKF(B)| ANK,FOUND}
[ ) APPND PC
* LAC HEAD, 1 SEY PNINTFR T0O HFAD OF TRFF,
e GNBC
® TRA 0,1 _YRACE SPECIAL WORD TREE.




09/04/64

THIS WILL BE EXPANDED IN VHE LISTING AS IS SHOWN HERE.

: LABEL
ANAME EQU e

ANAME (APOSTROPHE-ENCLOSED  NAME)

APDSTROPHE-ENCLOSED NAME ..

? GNC
GET NEXT CHARACTER ,
1F NC,NEQ(=H00000"*)
@ IF NEXT CHARACTER NOT EQUAL TO
=H0000Q*
YHEN
« THEN
= GOTO ANAME
‘ GO TO APOSTROPHE-ENCLODSED NAME ,
ELSE
e ELSE
APPND NC '
APPEND NEXT CHARACTER 7D ID
. STRING o
GNC
GEY NEXY CHARACTER .
GOT0 NONSPC :
— GO TD NONSPL »
® se0cee
®_
LABEL BLNKF (BLANK , FOUND)
MQQQiQ_______ELﬂKE__EQU L \
| AL ANK FOUND
‘ APPND PC
APPEND PEEK CHARACTER TO0 ID
STRING o
00003 10001 LAC HEAD, I ‘ SET POINTER YO HEAD OF TREE,
GNBC : \ ;
. GET NON BLANK CHARACTER ,
00000 10000 TRA 0.1 ' TRACE SPECIAL WORD TREE.




